一是统一一个模型泛化多种任务和环境:通过构建一个统一的原生模型,融合视觉、语言、触觉和身体姿态等全模态信息,实现对不同任务和环境的泛化能力。此外,通过不同任务之间的数据共享和迁移,能够进一步提升模型的泛化能力。
二是端到端:从接收全模态数据,到生成最终输出(如决策、动作等)的整个过程,通过一个简洁的神经网络链路完成。该过程无需人为设计特征、预编程或干预处理步骤,使得具身智能体能够实时适应不同任务和环境,显著提升灵活性与开发效率。
三是Scaling up(规模化):真正的统一的端到端算法才允许模型通过持续的数据积累实现自我完善,使得具身大模型在数据量指数级增长的同时,不仅提升性能,还能在未知任务中展现卓越的自适应和泛化能力。
-=||=-收藏赞 (0)
评论 ( 0 )